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Abstract In an alternative approach to “characterizing” the graph class
of visibility graphs of simple polygons, we study the problem of finding
a maximum clique in the visibility graph of a simple polygon with n
vertices. We show that this problem is very hard, if the input polygons
are allowed to contain holes: a gap-preserving reduction from the maxi-
mum clique problem on general graphs implies that no polynomial time
algorithm can achieve an approximation ratio of n1/8−ε

4 for any ε > 0,
unless NP = P . To demonstrate that allowing holes in the input poly-
gons makes a major difference, we propose an O(n3) algorithm for the
maximum clique problem on visibility graphs for polygons without holes
(other O(n3) algorithms for this problem are already known [3,6,7]). Our
algorithm also finds the maximum weight clique, if the polygon vertices
are weighted.
We then proceed to study the problem of partitioning the vertices of a
visibility graph of a polygon into a minimum number of cliques. This
problem is APX-hard for polygons without holes (i.e., there exists a
constant γ > 0 such that no polynomial time algorithm can achieve an
approximation ratio of 1 + γ). We present an approximation algorithm
for the problem that achieves a logarithmic approximation ratio by it-
eratively applying the algorithm for finding maximum weighted cliques.
Finally, we show that the problem of partitioning the vertices of a vis-
ibility graph of a polygon with holes cannot be approximated with a
ratio of n1/14−γ

4 for any γ > 0 by proposing a gap-preserving reduction.
Thus, the presence of holes in the input polygons makes this partitioning
problem provably harder.

1 Introduction

Visibility problems have received considerable attention in the past. On the one
hand, art gallery problems – such as Minimum Vertex Guard – have been
studied intensively with respect to both, bounds on descriptional complexity as
well as computational complexity results. On the other hand, visibility graphs
continue to draw interest. A simple polygon with(out) holes is given by its ordered
sequence of vertices on the outer boundary, together with an ordered sequence
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of vertices for each hole, if any. Two polygon vertices see each other, iff the
straight line segment connecting the two vertices does not intersect the exterior
(or holes) of the polygon. A graph G = (V, E) with vertices v1, . . . , vn is a visibil-
ity graph, iff there exists a simple polygon P (with or without holes) consisting
of vertices p1, . . . , pn such that the polygon vertices pi and pj see each other, iff
(vi, vj) ∈ E. The visibility graph characterization problem consists of finding a
set of graph-theoretic properties that exactly define visibility graphs. It is closely
related to the visibility graph recognition problem, which consists of determining
if a given graph is a visibility graph. A lot of work has been done on the visibility
graph characterization problem (see [15,13,24] or [25] for a survey), but it still
is not satisfactorily solved. A different approach to “characterizing” the class of
visibility graphs is to determine the computational complexity (and in case of
NP -hardness the approximability) of classic graph-theoretic problems on visibil-
ity graphs. Actually, a considerable amount of work has been done that falls in
the realm of this approach, because many classic graph-theoretic problems have
a geometric interpretation in the context of visibility graphs. Also, the problem
Minimum Coloring on Visibility Graph is mentioned as an open problem
(with respect to its computational complexity) in an open problems list [22].

Consider, for example, the problem Maximum Independent Set on Vis-
ibility Graph, in which we are given a simple polygon with n vertices and we
are to find the maximum independent set in the corresponding visibility graph.
This problem corresponds to finding a maximum set of polygon vertices that are
hidden from each other. The problem is therefore also called Maximum Hidden
Vertex Set. It is known to be NP -hard [26], APX-hard for polygons without

holes and hard to approximate with an approximation ratio of n
1
6 −γ

4 for all γ > 0
for polygons with holes [12].

The problem Minimum Dominating Set on Visibility Graph corre-
sponds to finding a minimum set C of polygon vertices such that each polygon
vertex can be seen from at least one vertex in C. This problem is a variation
of the well known art gallery problem Minimum Vertex Guard, which asks
for a minimum number of vertices (guards) of a given polygon such that every
point in the interior and on the boundary of the polygon can be seen from at
least one guard. It is easy to see that the inapproximability results as well as
approximability results for Minimum Vertex Guard carry over to Minimum
Dominating Set on Visibility Graph, which therefore is APX-hard [11] for
polygons without holes and not approximable with some approximation ratio
that is logarithmic in the number of polygon vertices for polygons with holes [9].
Furthermore it is approximable with a logarithmic ratio [14].

In this paper we study the problem Maximum Clique on Visibility Graph
with(out) Holes, in which we are given a simple polygon with(out) holes with
n vertices and we are to find the largest clique in the corresponding visibility
graph. We distinguish two separate problems by allowing holes or not. Note that
in the case of polygons without holes, this problem corresponds to finding a
largest (with respect to number of vertices) convex subpolygon of a given poly-
gon. The geometric interpretation in the case of polygons with holes is unclear.
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This problem has potential applications in the setting up of antenna networks
in terrains (see [10,12] for the relationship of polygons with terrains), where all
antennas must see each other in order to guarantee optimum connectivity.

We show that Maximum Clique on Visibility Graph with Holes can-
not be approximated by any polynomial time algorithm with an approximation
ratio of n1/8−ε

4 for any ε > 0, unless NP = P in Sect. 2. Thus, Maximum
Clique on Visibility Graph with Holes is almost as hard to approximate
as clique on general graphs. We propose a gap-preserving reduction (a technique
introduced in [2]) from Maximum Clique on general graphs to get this result.

The problem Maximum Clique on Visibility Graph without Holes
is known to be solvable in time O(n3) by slightly adopting algorithms [3,6,7]
that were developed to solve different problems (such as finding empty convex
polygons that are maximum with respect to the number of vertices by connecting
some of the input points). We propose an additional O(n3) algorithm for this
problem for polygons without holes in Sect. 3, which uses dynamic programming.
Our method also solves the weighted version of this problem, in which each vertex
is assigned a weight value and the total weight of all vertices in the clique is to
be maximized. We will use this weighted version (only with weights 0 and 1) to
obtain an approximation algorithm for another problem (see Sect. 4).1

This gap of “solvable in cubic time” vs. “almost as hard to approximate as
clique” is the most extreme gap ever discovered between the two versions of a
visibility problem on polygons with vs. without holes.

The problem Minimum Clique Partition consists of finding a partitioning
of the vertices of a given graph into a minimum number of disjoint vertex sets,
each of which must be a clique in the graph. Again, we can define this problem on
visibility graphs of polygons with or without holes. In the case of polygon without
holes, this problem is closely related to the problem Minimum Convex Cover
without Holes, which consists of covering a given polygon without holes with a
minimum number of (possibly overlapping) convex polygons. Minimum Clique
Partition on Visibility Graphs without Holes is a variant of Minimum
Convex Cover without Holes, where only the vertices are of interest (not
the edges or the interior area of the polygon).

A careful analysis (presented in [8]) of the reduction that was originally con-
structed to show the NP -hardness of Minimum Convex Cover [5] reveals that
Minimum Convex Cover is APX-hard. The analysis can be easily adopted
to work for Minimum Clique Partition on Visibility Graphs without
Holes. Therefore, Minimum Clique Partition on Visibility Graphs with-
out Holes is APX-hard2, i.e. there exists a constant ε > 0 such that no poly-
nomial time approximation algorithm can achieve an approximation ratio of 1+ε
for these problems, unless NP = P . In Sect. 4, we propose an approximation

1 The fact that our O(n3) algorithm solves the weighted version of Minimum Clique
on Visibility Graph without Holes, which will be used as a major building
block for another approximation algorithm, is the main reason for including it in
this paper, next to the obvious reason of self-containment.

2 See [4] and [2] for an introduction to the class APX.
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algorithm for Minimum Clique Partition on Visibility Graphs without
Holes that iteratively applies the algorithm for the weighted version of Maxi-
mum Clique on Visibility Graph without Holes and show that it achieves
a logarithmic approximation ratio. This result sheds some light on the approx-
imability of Minimum Clique Partition on Visibility Graphs without
Holes, but it still is not known whether a constant approximation ratio can
be achieved or whether the logarithmic approximation algorithm presented is
optimum.

There seems to be no straightforward geometric interpretation of Maximum
Clique Partition on Visibility Graph with Holes, but the problem is
certainly of theoretic interest, as we propose a gap-preserving reduction in Sect.
5 from Maximum Clique Partition on general graphs that shows that Max-
imum Clique Partition on Visibility Graph with Holes cannot be ap-
proximated with an approximation ratio of n1/14−γ

4 for any γ > 0.
This is the first result for a visibility problem that is NP -hard no matter

whether holes are allowed or not, where we are able to show that the approxi-
mation properties are clearly different for the cases of polygons with vs. with-
out holes: While Maximum Clique Partition on Visibility Graph with
Holes cannot be approximated with an approximation ratio of n1/14−γ

4 for any
γ > 0, we have a logarithmic approximation algorithm for Minimum Clique
Partition on Visibility Graphs without Holes.

In Sect. 6, we draw conclusions.
As for related work other than the previously mentioned, there are several

surveys on art gallery and visibility problems [21] [25] [27]. As for computa-
tional complexity results, Minimum Convex Cover with(out) Holes can
be approximated with a logarithmic approximation ratio [8]. The problems Min-
imum Vertex/Edge/Point Guard, which are guarding problems with dif-
ferent types of guards, are known to be NP -hard [19] and APX-hard [11] for
polygons without holes, and inapproximable with an approximation ratio loga-
rithmic in the number of polygon vertices for polygons with holes [9]. Further-
more, Minimum Vertex/Edge Guard can be approximated with a logarith-
mic approximation ratio for polygons with and without holes [14].

2 An Inapproximability Result for Maximum Clique on
Visibility Graph with Holes

We propose a gap-preserving reduction from the Maximum Clique problem
to the Maximum Clique on Visibility Graph with Holes problem. The
technique of gap-preserving reductions [2] maps the promise problem of Maxi-
mum Clique to the promise problem Maximum Clique on Polygons with
Holes. Suppose we are given an instance I of the promise problem Maximum
Clique, i.e., a graph G = (V, E) with n := |V | and an integer k with 2 ≤ k ≤ n,
where ε > 0 is arbitrarily small, but fixed. We are promised that the size of a
maximum clique in the graph G is either at least k or strictly less than k

n1/2−ε . It
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Figure 1. Basic construction: an input graph

is NP -hard to decide which of these two cases is true, because otherwise, Max-
imum Clique could be approximated by a polynomial time algorithm with an
approximation ratio of n1/2−ε, which cannot be done unless NP = P [16].

The basic idea of the reduction is shown in Figs. 1 and 2. For each instance
I of Maximum Clique, i.e., for each graph G = (V, E) with n := |V | (as shown
in an example in Fig. 1), we construct an instance I ′ of Maximum Clique on
Visibility Graph With Holes, i.e., a polygon with holes (as shown in an
example in Fig. 2). The main polygon is in the shape of a regular 2n-gon with
vertices named vi and v′

i for i ∈ {1, . . . , n}. For each vertex pair (vi, vj) /∈ E, we
construct two small triangular holes, one around the intersection point of the
line segment from vi to vj and the line segment from v′

i to v′
i+1, and one around

the intersection point of the line segment from vi to vj and the line segment
from v′

j to v′
j+1. These triangular holes are designed to block the view of vertices

vi and vj that are not supposed to see each other, since they are not connected
by an edge in the input graph. The detailed, and rather technical construction
of the holes is described in [12], and we therefore omit it here.

In order to make the reduction work, we refine the polygon with holes ob-
tained thus far as follows:

For each vertex vi let vL
i (vR

i ) be the point on the line segment from vi to
v′

i−1 (v′
i) that is closest to point v′

i−1 (v′
i) such that the view of vL

i to vR
j (vR

i to
vL

j ) for all vj is still blocked by the corresponding two holes, if vertices vi and
vj are not connected in the input graph by an edge. These points are illustrated
in Fig. 2.

For each vertex vi, we replace the two line segments from vL
i to vi to vR

i by a
convex chain of of n3−1 line segments (called the chain of vi). This is illustrated
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Figure 2. Basic construction: polygon with holes resulting from the graph in Fig. 1

in Fig. 3. By the way that we chose points vL
i and vR

i , it is ensured that any two
vertices from chains of vi and vj see each other, iff (vi, vj) ∈ E .

The following two lemmas allow us to prove the main result of this section. Let
OPT denote the size of an optimum solution of the Maximum Clique instance
I and let OPT ′ denote the size of an optimum solution of the Maximum Clique
on Visibility Graph with Holes instance I ′. Let ε > 0.

Lemma 1. OPT ≥ k =⇒ OPT ′ ≥ n3k

Proof. If OPT ≥ k, then there exists a clique of size k in I. We obtain a clique
in I ′ of size n3k by simply letting all the n3 vertices of the chain of vi be in the
solution, if vertex vi ∈ V is in the clique. ut

Lemma 2. OPT < k
n1/2−ε =⇒ OPT ′ < n3k

n1/2−ε + 3n2
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Figure 3. Chain of vertex vi

Proof. We prove the contraposition:OPT ′ ≥ n3k
n1/2−ε + 3n2 =⇒ OPT ≥ k

n1/2−ε .
Suppose we have a solution of I ′ with n3k

n1/2−ε + 3n2 points. Since there are at
most n(n−1) holes with 3 vertices each and n additional vertices v′

i, there can be
at most 3n(n − 1) + n ≤ 3n2 vertices in the clique that are not part of the chain
of some vi. Therefore, at least n3k

n1/2−ε vertices of the clique must be in chains.
Since a chain consists of only n3 vertices, each chain can contribute at most n3

vertices to the clique. Therefore, the number of chains that contain at least one

point from the solution is at least
n3k

n1/2−ε

n3 = k
n1/2−ε . Since no two vertices of two

different chains vi and vj see each other unless (vi, vj) ∈ E, we immediately have
a solution for I with at least k

n1−ε vertices by letting vi be in the clique if at
least one point of the chain of vi is in the solution. ut

Lemmas 1 and 2 transform the promise problem of Maximum Clique as
mentioned above into a promise problem of Maximum Clique on Visibility
Graph with Holes, where we are promised that an optimum solution contains
either at least n3k vertices or strictly less than n3k

n1/2−ε + 3n2 vertices. It is also
NP -hard to decide, which of the two cases is true, since otherwise, we could solve
the NP -hard promise problem of Maximum Clique (see [2] for more details on
the notion of such gap-preserving reductions). Maximum Clique on Visibility
Graph with Holes can therefore not be approximated by any polynomial time
approximation algorithm with an approximation ratio of:

n3k
n3k

n1/2−ε + 3n2
=

n3k
n3k+3n1−2ε

n1/2−ε

≥ n3k
2n3k

n1/2−ε

=
n1/2−ε

2

We now need to express the size |I ′| of the Maximum Clique on Visibility
Graph with Holes instance I ′ by the size n of the Maximum Clique instance
I. According to the construction, |I ′| ≥ 2n4. We proceed:

n1/2−ε

2
≥

|I′| 1
4 ( 1

2 −ε)

2
1
4 ( 1

2 −ε)

2
≥ |I ′| 1

8 − ε
4

4
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This completes the proof of our main theorem of this section:

Theorem 1. Maximum Clique on Visibility Graphs with Holes cannot
be approximated by any polynomial time algorithm with an approximation ratio
of |I′|1/8−γ

4 , where |I ′| is the number of vertices in the polygon and where γ > 0,
unless NP = P .

3 An O(n3) Algorithm for Maximum Clique on Visibility
Graph without Holes

Our polynomial time algorithm for Maximum Clique on Visibility Graph
without Holes uses dynamic programming.

Suppose we are given a simple polygon P without holes, which consists of
n vertices v1, . . . , vn in counterclockwise order. We first compute the visibility
graph G = G(P ) of this polygon, which can be done in time O(|E|), where E is
the set of edges in G [17]. This allows us to answer queries of the form “Does
vertex vi see vertex vj ?” in time O(1). As we will use a weighted version of this
problem to find an approximation algorithm for Minimum Clique partition
on Visibility Graph without Holes, we introduce a non-negative weight
wi for each vertex vi. We are now to find a clique in G that has a maximum
total weight. In the following, all operations are modulo n, where applicable. Let
Ai,j,k with i < j ≤ k be the maximum clique (with respect to its weight) among
all cliques, which consist of vertices vi, vj and vk and additional vertices vj′ with
i < j′ < j. Let |Ai,j,k| denote the weight of Ai,j,k. The optimum solution OPT
is:

OPT = Ai,j,j where i, j are such that |Ai,j,j | = max
1≤i<j≤n

|Ai,j,j |

Given all Ai,j,j , OPT can be computed in O(n2) time. A can be considered to
be a three-dimensional table. It is initialized as follows:

Ai,i+1,j = {vi, vi+1, vj},∀i, j, where vertices vi, vi+1, vj all see each other

This initialization can be done in time O(n3). The remaining entries of the table
A are initialized with empty sets and then computed according to Lemma 3.

Lemma 3. Assume vertices vi, vj, and vk see each other. Then, Ai,j,k = Ai,j′,j∪
vk, where j′ is such that |Ai,j′,j | = max |Ai,j′′,j |, where the maximum is taken
over all j′′ with i ≤ j′′ ≤ j and where vj′′ sees vi, vj, and vk.

Proof. The proof is inductive. Suppose we know that the lemma holds for Ai,j,k′

with k′ < k. To show that it also holds for Ai,j,k, we assume by contradiction that
there exists a clique P ′, which consists of vertices vi, vj and vk and additional
vertices vl′ with i < l′ < j and which is strictly heavier than Ai,j,k (as computed
in the Lemma).

Let vl be the vertex in P ′ that is the neighbor of vj in P ′ in clockwise order,
when we interpret the clique P ′ as a convex polygon. Now, consider the clique
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Figure 4. Proof of Lemma 3

Ai,l,j , which is maximum by assumption. Because vj is the neighboring vertex
of vl in P ′, we have |P ′| ≤ |Ai,l,j | + wk. We will now argue that vertex vk can
be added to the clique Ai,l,j and the resulting set of vertices (i.e. Ai,l,j ∪ vk) is
still a clique.

Consider Fig. 4. First, note that vertex vj must lie to the right of the line from
vi to vk, because vertices vi, vj and vk all see each other and because i ≤ j ≤ k.
Since vi, vl, vj , vk ∈ P ′ and i ≤ l ≤ j ≤ k and since P ′ is a clique, vertex vl

must lie to the right of the line from vertex vi to vk and to the left of the line
from vj to vk. Now, consider all vertices l′′ ∈ Ai,l,j that lie between i and l (i.e.
i < l′′ < l). By definition of Ai,l,j , all these vertices see vi, vl and vj . This implies
that all vertices vl′′ also see vk, because any polygon segment blocking the view
of some vertex vl′ to vk would imply the existence of a polygon segment that
would block the view of vl′′ to either vi or vl. We have shown that all vertices
in Ai,l,j also see vk, therefore Ai,l,j ∪ vk is a clique as well.

The polygon Ai,l,k is among those polygons over which the maximum is taken
in the Lemma to compute Ai,j,k. Therefore, |Ai,j,k| ≥ P ′, which is a contradiction
to the assumption that P ′ is strictly heavier than Ai,j,k. ut

A trivial implementation of the algorithm thus suggested would have a run-
ning time of O(n) for each of the O(n3) table entries, which results in an overall
running time of O(n4). It is, however, possible to implement the algorithm with
a total running time of O(n3). To achieve this, we show how to compute Ai,j,k

with i, j fixed and Ai,j′,j already computed for i ≤ j′ ≤ j, in time O(n) (for all
k with j ≤ k ≤ i). This directly leads to an O(n3) algorithm, since there are
only O(n2) pairs i, j.

To speed up the algorithm, fix i, j. Then compute all vk with j ≤ k ≤ i that
are visible from vi and vj . Let K denote the counterclockwise ordered set of
all these vertices vk. Let L denote the clockwise ordered set of vertices vl with
i ≤ l ≤ j that are visible to both vi and vj For each vertex vl ∈ L (working from
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vj towards vi): Determine, which vertices vk ∈ K are visible from vl. Let k′ < k′′.
Note that if vl sees vk′ ∈ K, then it also sees vk′′ ∈ K. Let vkmin denote the first
vk ∈ K that sees vl. It suffices to just “link” vkmin ∈ K to Ai,l,j (depending on
the implementation, a “link” could be an entry in some record field or a pointer).
Note that as we work our way through L from vj to vi, the vkmin ’s get smaller, i.e.
proceed towards vj . Thus, determining vkmin can be done in total time O(|K|)
for all vl ∈ L (if (|K| > |L|, otherwise it is O(|L|)). We now scan through K.
If vk ∈ K is “linked” to some Ai,j,l, we compare the weight of Ai,j,l with the
weight of the currently optimum solution. If |Ai,j,l| is greater than the weight of
the currently optimum solution, we update the currently optimum solution to
Ai,j,l. If vk is not “linked”, we link it to the currently optimum solution. Now,
set Ai,j,k to the currently optimum solution with vk added. We also store |Ai,j,k|.
This scanning through K can be done in time O(|K|). Thus, the total running
time to compute Ai,j,k for all k is O(max{|L|, |K|}), which is O(n).

Let us summarize the result of this section:

Theorem 2. The weighted version of Maximum Clique on Visibility Graph
without Holes, where non-negative weights are assigned to the vertices, can
be solved in time O(n3) using dynamic programming.

4 An Approximation Algorithm for Minimum Clique
Partition on Visibility Graph without Holes

Our approximation algorithm for Minimum Clique Partition on Visbility
Graph without Holes iteratively applies the polynomial time algorithm for
the weighted version of Maximum Clique on Visibility Graph without
Holes. It works as follows for a given polygon P :

1. Compute the visibility graph G(P ) of the polygon P . Let all vertices have
weight 1.

2. Find the maximum weighted clique C in G(P ) using the algorithm proposed
in Sect. 3. Let all vertices vi ∈ C have weight 0. Add C to the solution S.

3. Repeat step 2 until there are no vertices with weight 1 left. Return S.

To obtain a performance guarantee of this algorithm, consider the Minimum
Set Cover3 instance I, which has all polygon vertices vi as elements and the
vertices of each clique in the visibility graph of the polygon are a set in I. The
greedy heuristic for Minimum Set Cover, which consists of recursively adding
to the solution a set, which contains a maximum number of elements not yet
covered by the solution, achieves an approximation ratio of 1+lnn, where n is the
number of elements in I [18]. Our algorithm works in exactly this way. Note that
we do not have to compute all the sets of the Minimum Set Cover instance I
(which would possibly be a number exponential in n), since it suffices to always
3 Minimum Set Cover consists of finding a minimum number of sets among a given

collection of sets such that each element of a given universe appears in at least one
of these sets.
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compute a set (or clique), which contains a maximum number of vertices not
yet covered by the solution, which is achieved by reducing the weights of the
vertices already in the solution to 0. Thus, our algorithm is polynomial.

Theorem 3. Minimum Clique Partition on Visibility Graph without
Holes can be approximated with an approximation ratio of 1 + lnn, where n is
the number of polygon vertices, by a greedy heuristic.

5 An Inapproximability Result for Minimum Clique
Partition on Visibility Graph with Holes

Minimum Clique Partition on general graphs is equivalent to Minimum
Graph Coloring [4]. It cannot be approximated by any polynomial time algo-
rithm with an approximation ratio of n1/7−ε, where ε > 0 and n is the number
of vertices in the graph [4]. We propose a gap-preserving reduction from Min-
imum Clique Partition on general graphs to Minimum Clique Partition
on Visibility Graph with Holes.

Again, we map the NP -hard promise problem of Minimum Clique Par-
tition on general graphs, where we are promised that an optimum solution
consists of either at most k or strictly more than n1/7−εk cliques, to a promise
problem of Minimum Clique Partition on Visibility Graph with Holes,
where we are promised that an optimum solution consists of either at most
k + 3 or strictly more than n1/7−εk cliques. We use the same construction as
used in Sect. 2. However, we do not need to use the “chains” as introduced
in Sect. 2. Let OPT (OPT ′) denote the size of an optimum solution of the
Maximum Clique Partition (Maximum Clique Partition on Visibility
Graph with Holes) instance I (I ′). Let ε > 0.

Lemma 4. OPT ≤ k =⇒ OPT ′ ≤ k + 3 and OPT > n1/7−εk =⇒ OPT ′ >
n1/7−εk

Proof. For the first implication: If OPT ≤ k, then there exists a solution of size
k in I. We obtain a solution in I ′ of size k + 3 by simply letting all cliques from
the solution in I be cliques in I ′ and by adding three more cliques. One of these
consists of all the “bottom” vertices of all holes (i.e. those vertices that lie on
line segments between points v′

i−1 and v′
i for all i). The holes are constructed

in such a way that these vertices actually form a clique (see [12]). The second
clique consists of the “top” vertices of all holes. The third clique consists of
all vertices v′

i. The construction of the reduction ensures that these additional
cliques actually are cliques.

We prove the contraposition of the second implication: A solution for I ′ can
be interpreted as a solution for I, where the additional vertices of I ′ are ignored.

ut

We now proceed as in Sect. 2 using the same concepts. Lemma 4 and the
fact that |I ′| ≥ 3n2 allow us to prove:
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Theorem 4. Maximum Clique Partition on Visibility Graph with
Holes cannot be approximated by any polynomial time algorithm with an ap-
proximation ratio of |I′|1/14−γ

4 , where |I ′| is the number of vertices in the polygon
and where γ > 0, unless NP = P .

6 Conclusion

We have studied the two problems Maximum Clique on Visibility Graph
and Minimum Clique Partition on Visibility Graph for both polygons
with and without holes. In the case of polygons without holes, the clique prob-
lem can be solved in polynomial time and this algorithm can be used in an
approximation algorithm for the clique partition problem to achieve a logarith-
mic approximation ratio. The best inapproximability result known for the clique
partition problem without holes is APX-hardness, thus the approximability of
this problem is not yet precisely characterized.

In the case of polygons with holes, we have shown for both problems in-
approximability ratios of nε for some ε > 0, and have thus placed these two
problems in the corresponding inapproximability class as defined in [2].

Our approach of “characterizing” the class of visibility graphs by studying
classic graph problems for this class has been used before – at least implicitly.
The computational complexity of the related problem of coloring the vertices
of a visibility graph with a minimum number of colors is completely unknown
and an open problem for future research [22]. Other open problems include, of
course, determining the exact approximation threshold for Minimum Clique
Partition on Visibility Graph without Holes.
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